
Discover and Design Sun Twisty Puzzles

Alexandru Popa

alpopa@gmail.com

Abstract

This article presents the algorithm of rigorous searching for non–trivial twisty puzzles with
sun mechanism. It also presents some hints of how to design their mechanism.

1 Introduction
Currently, there are several twisty puzzles with sunmechanism, whichwewill call sun twisty puzzles
or simply sun puzzles. Several other puzzles are custom designed and made. Figure 1 presents
commercially available puzzles of cubic form, Figure 2 presents commercially available dodecahedral
family of puzzles from mf8.

Figure 1: Sun puzzles with cubic shape: left – DaYan Bagua Cube, right – mf8 Sun Cube.

Sun mechanism allows face twists by half of usual angle: 45◦ instead of 90◦ for cubic form and
36◦ instead of 72◦ for dodecahedral forms1.

The usual sun mechanism is presented in Figure 3 applied to Sun Cube2. We will name the pieces
of sun mechanism as follows:

Center — not shown,

Vertex — left and right, gray background,
1WitEden Mixup series as well as mf8 Son–Mum series of puzzles allow twists by half of usual angle of the middle

layer. These new moves form different combinations and are realized by different mechanism.
2All 3D diagrams are interactive. They can be interactively viewed with Adobe Reader ®.

1

Figure 2: mf8 family of sun puzzles: 1st row left to righ – Sunminx and Cullinan, 2nd row left to
right – Sky Eyes and Big Dipper.

Edge — middle, gray background,

Left Ray — light blue background, bottom left and top right to edge,

Right Ray — light green background, top left and bottom right to edge,

Petal — pink background, 3 top and 3 bottom are shown,

Hidden — light yellow background, between edge and vertices.

On Bagua mechanism, hidden pieces are actually visible and have colored stickers.
Petal and hidden pieces both have mirror symmetry. Left and right rays (mirror of each other)

look identical and symmetrical on the puzzle surface, however in interior of puzzle they are different.
The cluster composed of a ray (left or right) and a hidden part make a mirror symmetrical composite.

Because of half turns, the sun mechanism allows interchanging of vertices with edges. More
than that, edges can be rotated 3-fold (like vertices) and vertices in pace of edges can be rotated
2-fold (like edges).

2

Figure 3: Elements of mechanism of Sun Cube.

2 Definitions
Twisty puzzles have rotational symmetry. The number of turns by minimal angle around an axis,
that make up whole turn is named order of axis. Sun mechanism doubles the order of axes.

The half–twists, specific to sun puzzles, increase their complexity. We define combinatorial sym-
metry of a puzzle as the maximal number of interchangeable pieces multiplied by their symmetry
(number of ways a piece can be placed) across all part types. In case of Sun Cube, the combinatorial
symmetry can be computed as:

Centers: 6 × 8 = 48,

Petals: 48 × 1 = 48,

Left or right rays: 24 × 1 = 24,

Edges: 12 × 2 = 24,

Hiddens: 24 × 1 = 24,

Vertices: 8 × 3 = 24.

Among these numbers, the largest is 48. This is twice as much as for Cube 3×3, whose combinatorial
symmetry is 24. In case of Cube 3×3, combinatorial and geometrical symmetries match: the cube
has a group of even symmetry3 of order 24.

The combinatorial symmetry of Sunminx, Sky Eyes, Cullinan and Big Dipper are all equal to 120
(computed by petals). This is twice as much as 60, the combinatorial symmetry of Megaminx 3×3.
It is also larger than 96, the combinatorial symmetry of Crazy Comet whose sun variant is Sky Eyes.
The combinatoral symmetry of sun puzzles can always be computed using petal pieces and equals
to the number of axes multiplied by their order: 6 × 8 = 48 for cubic shaped puzzles and 12 × 10 =
120 for dodecahedral shaped puzzles.

The pattern on faces of sun puzzles always has the form of regular star polygons. These polygons
are similar to convex regular polygons, but their sides connect not necessarily adjacent vertices.
The mathematical notation for star polygon is a fraction whose numerator indicates the number

3Thewhole group of symmetry contains even rotations and oddmirrormotions. Themirrormotions are not available
in physically produces twisty puzzles.

3

//
//
// (C) 2012--today, Alexander Grahn
//
// 3Dmenu.js
//
// version 20140923
//
//
//
// 3D JavaScript used by media9.sty
//
// Extended functionality of the (right click) context menu of 3D annotations.
//
// 1.) Adds the following items to the 3D context menu:
//
// * `Generate Default View'
//
// Finds good default camera settings, returned as options for use with
// the \includemedia command.
//
// * `Get Current View'
//
// Determines camera, cross section and part settings of the current view,
// returned as `VIEW' section that can be copied into a views file of
// additional views. The views file is inserted using the `3Dviews' option
// of \includemedia.
//
// * `Cross Section'
//
// Toggle switch to add or remove a cross section into or from the current
// view. The cross section can be moved in the x, y, z directions using x,
// y, z and X, Y, Z keys on the keyboard, be tilted against and spun
// around the upright Z axis using the Up/Down and Left/Right arrow keys
// and caled using the s and S keys.
//
// 2.) Enables manipulation of position and orientation of indiviual parts and
// groups of parts in the 3D scene. Parts which have been selected with the
// mouse can be scaled moved around and rotated like the cross section as
// described above. To spin the parts around their local up-axis, keep
// Control key pressed while using the Up/Down and Left/Right arrow keys.
//
// This work may be distributed and/or modified under the
// conditions of the LaTeX Project Public License.
//
// The latest version of this license is in
// http://mirrors.ctan.org/macros/latex/base/lppl.txt
//
// This work has the LPPL maintenance status `maintained'.
//
// The Current Maintainer of this work is A. Grahn.
//
// The code borrows heavily from Bernd Gaertners `Miniball' software,
// originally written in C++, for computing the smallest enclosing ball of a
// set of points; see: http://www.inf.ethz.ch/personal/gaertner/miniball.html
//
//
//host.console.show();

//constructor for doubly linked list
function List(){
 this.first_node=null;
 this.last_node=new Node(undefined);
}
List.prototype.push_back=function(x){
 var new_node=new Node(x);
 if(this.first_node==null){
 this.first_node=new_node;
 new_node.prev=null;
 }else{
 new_node.prev=this.last_node.prev;
 new_node.prev.next=new_node;
 }
 new_node.next=this.last_node;
 this.last_node.prev=new_node;
};
List.prototype.move_to_front=function(it){
 var node=it.get();
 if(node.next!=null && node.prev!=null){
 node.next.prev=node.prev;
 node.prev.next=node.next;
 node.prev=null;
 node.next=this.first_node;
 this.first_node.prev=node;
 this.first_node=node;
 }
};
List.prototype.begin=function(){
 var i=new Iterator();
 i.target=this.first_node;
 return(i);
};
List.prototype.end=function(){
 var i=new Iterator();
 i.target=this.last_node;
 return(i);
};
function Iterator(it){
 if(it!=undefined){
 this.target=it.target;
 }else {
 this.target=null;
 }
}
Iterator.prototype.set=function(it){this.target=it.target;};
Iterator.prototype.get=function(){return(this.target);};
Iterator.prototype.deref=function(){return(this.target.data);};
Iterator.prototype.incr=function(){
 if(this.target.next!=null) this.target=this.target.next;
};
//constructor for node objects that populate the linked list
function Node(x){
 this.prev=null;
 this.next=null;
 this.data=x;
}
function sqr(r){return(r*r);}//helper function

//Miniball algorithm by B. Gaertner
function Basis(){
 this.m=0;
 this.q0=new Array(3);
 this.z=new Array(4);
 this.f=new Array(4);
 this.v=new Array(new Array(3), new Array(3), new Array(3), new Array(3));
 this.a=new Array(new Array(3), new Array(3), new Array(3), new Array(3));
 this.c=new Array(new Array(3), new Array(3), new Array(3), new Array(3));
 this.sqr_r=new Array(4);
 this.current_c=this.c[0];
 this.current_sqr_r=0;
 this.reset();
}
Basis.prototype.center=function(){return(this.current_c);};
Basis.prototype.size=function(){return(this.m);};
Basis.prototype.pop=function(){--this.m;};
Basis.prototype.excess=function(p){
 var e=-this.current_sqr_r;
 for(var k=0;k<3;++k){
 e+=sqr(p[k]-this.current_c[k]);
 }
 return(e);
};
Basis.prototype.reset=function(){
 this.m=0;
 for(var j=0;j<3;++j){
 this.c[0][j]=0;
 }
 this.current_c=this.c[0];
 this.current_sqr_r=-1;
};
Basis.prototype.push=function(p){
 var i, j;
 var eps=1e-32;
 if(this.m==0){
 for(i=0;i<3;++i){
 this.q0[i]=p[i];
 }
 for(i=0;i<3;++i){
 this.c[0][i]=this.q0[i];
 }
 this.sqr_r[0]=0;
 }else {
 for(i=0;i<3;++i){
 this.v[this.m][i]=p[i]-this.q0[i];
 }
 for(i=1;i<this.m;++i){
 this.a[this.m][i]=0;
 for(j=0;j<3;++j){
 this.a[this.m][i]+=this.v[i][j]*this.v[this.m][j];
 }
 this.a[this.m][i]*=(2/this.z[i]);
 }
 for(i=1;i<this.m;++i){
 for(j=0;j<3;++j){
 this.v[this.m][j]-=this.a[this.m][i]*this.v[i][j];
 }
 }
 this.z[this.m]=0;
 for(j=0;j<3;++j){
 this.z[this.m]+=sqr(this.v[this.m][j]);
 }
 this.z[this.m]*=2;
 if(this.z[this.m]<eps*this.current_sqr_r) return(false);
 var e=-this.sqr_r[this.m-1];
 for(i=0;i<3;++i){
 e+=sqr(p[i]-this.c[this.m-1][i]);
 }
 this.f[this.m]=e/this.z[this.m];
 for(i=0;i<3;++i){
 this.c[this.m][i]=this.c[this.m-1][i]+this.f[this.m]*this.v[this.m][i];
 }
 this.sqr_r[this.m]=this.sqr_r[this.m-1]+e*this.f[this.m]/2;
 }
 this.current_c=this.c[this.m];
 this.current_sqr_r=this.sqr_r[this.m];
 ++this.m;
 return(true);
};
function Miniball(){
 this.L=new List();
 this.B=new Basis();
 this.support_end=new Iterator();
}
Miniball.prototype.mtf_mb=function(it){
 var i=new Iterator(it);
 this.support_end.set(this.L.begin());
 if((this.B.size())==4) return;
 for(var k=new Iterator(this.L.begin());k.get()!=i.get();){
 var j=new Iterator(k);
 k.incr();
 if(this.B.excess(j.deref()) > 0){
 if(this.B.push(j.deref())){
 this.mtf_mb(j);
 this.B.pop();
 if(this.support_end.get()==j.get())
 this.support_end.incr();
 this.L.move_to_front(j);
 }
 }
 }
};
Miniball.prototype.check_in=function(b){
 this.L.push_back(b);
};
Miniball.prototype.build=function(){
 this.B.reset();
 this.support_end.set(this.L.begin());
 this.mtf_mb(this.L.end());
};
Miniball.prototype.center=function(){
 return(this.B.center());
};
Miniball.prototype.radius=function(){
 return(Math.sqrt(this.B.current_sqr_r));
};

//functions called by menu items
function calc3Dopts () {
 //create Miniball object
 var mb=new Miniball();
 //auxiliary vector
 var corner=new Vector3();
 //iterate over all visible mesh nodes in the scene
 for(i=0;i<scene.meshes.count;i++){
 var mesh=scene.meshes.getByIndex(i);
 if(!mesh.visible) continue;
 //local to parent transformation matrix
 var trans=mesh.transform;
 //build local to world transformation matrix by recursively
 //multiplying the parent's transf. matrix on the right
 var parent=mesh.parent;
 while(parent.transform){
 trans=trans.multiply(parent.transform);
 parent=parent.parent;
 }
 //get the bbox of the mesh (local coordinates)
 var bbox=mesh.computeBoundingBox();
 //transform the local bounding box corner coordinates to
 //world coordinates for bounding sphere determination
 //BBox.min
 corner.set(bbox.min);
 corner.set(trans.transformPosition(corner));
 mb.check_in(new Array(corner.x, corner.y, corner.z));
 //BBox.max
 corner.set(bbox.max);
 corner.set(trans.transformPosition(corner));
 mb.check_in(new Array(corner.x, corner.y, corner.z));
 //remaining six BBox corners
 corner.set(bbox.min.x, bbox.max.y, bbox.max.z);
 corner.set(trans.transformPosition(corner));
 mb.check_in(new Array(corner.x, corner.y, corner.z));
 corner.set(bbox.min.x, bbox.min.y, bbox.max.z);
 corner.set(trans.transformPosition(corner));
 mb.check_in(new Array(corner.x, corner.y, corner.z));
 corner.set(bbox.min.x, bbox.max.y, bbox.min.z);
 corner.set(trans.transformPosition(corner));
 mb.check_in(new Array(corner.x, corner.y, corner.z));
 corner.set(bbox.max.x, bbox.min.y, bbox.min.z);
 corner.set(trans.transformPosition(corner));
 mb.check_in(new Array(corner.x, corner.y, corner.z));
 corner.set(bbox.max.x, bbox.min.y, bbox.max.z);
 corner.set(trans.transformPosition(corner));
 mb.check_in(new Array(corner.x, corner.y, corner.z));
 corner.set(bbox.max.x, bbox.max.y, bbox.min.z);
 corner.set(trans.transformPosition(corner));
 mb.check_in(new Array(corner.x, corner.y, corner.z));
 }
 //compute the smallest enclosing bounding sphere
 mb.build();
 //
 //current camera settings
 //
 var camera=scene.cameras.getByIndex(0);
 var res=''; //initialize result string
 //aperture angle of the virtual camera (perspective projection) *or*
 //orthographic scale (orthographic projection)
 if(camera.projectionType==camera.TYPE_PERSPECTIVE){
 var aac=camera.fov*180/Math.PI;
 if(host.util.printf('%.4f', aac)!=30)
 res+=host.util.printf('\n3Daac=%s,', aac);
 }else{
 camera.viewPlaneSize=2.*mb.radius();
 res+=host.util.printf('\n3Dortho=%s,', 1./camera.viewPlaneSize);
 }
 //camera roll
 var roll = camera.roll*180/Math.PI;
 if(host.util.printf('%.4f', roll)!=0)
 res+=host.util.printf('\n3Droll=%s,',roll);
 //target to camera vector
 var c2c=new Vector3();
 c2c.set(camera.position);
 c2c.subtractInPlace(camera.targetPosition);
 c2c.normalize();
 if(!(c2c.x==0 && c2c.y==-1 && c2c.z==0))
 res+=host.util.printf('\n3Dc2c=%s %s %s,', c2c.x, c2c.y, c2c.z);
 //
 //new camera settings
 //
 //bounding sphere centre --> new camera target
 var coo=new Vector3();
 coo.set((mb.center())[0], (mb.center())[1], (mb.center())[2]);
 if(coo.length)
 res+=host.util.printf('\n3Dcoo=%s %s %s,', coo.x, coo.y, coo.z);
 //radius of orbit
 if(camera.projectionType==camera.TYPE_PERSPECTIVE){
 var roo=mb.radius()/ Math.sin(aac * Math.PI/ 360.);
 }else{
 //orthographic projection
 var roo=mb.radius();
 }
 res+=host.util.printf('\n3Droo=%s,', roo);
 //update camera settings in the viewer
 var currol=camera.roll;
 camera.targetPosition.set(coo);
 camera.position.set(coo.add(c2c.scale(roo)));
 camera.roll=currol;
 //determine background colour
 rgb=scene.background.getColor();
 if(!(rgb.r==1 && rgb.g==1 && rgb.b==1))
 res+=host.util.printf('\n3Dbg=%s %s %s,', rgb.r, rgb.g, rgb.b);
 //determine lighting scheme
 switch(scene.lightScheme){
 case scene.LIGHT_MODE_FILE:
 curlights='Artwork';break;
 case scene.LIGHT_MODE_NONE:
 curlights='None';break;
 case scene.LIGHT_MODE_WHITE:
 curlights='White';break;
 case scene.LIGHT_MODE_DAY:
 curlights='Day';break;
 case scene.LIGHT_MODE_NIGHT:
 curlights='Night';break;
 case scene.LIGHT_MODE_BRIGHT:
 curlights='Hard';break;
 case scene.LIGHT_MODE_RGB:
 curlights='Primary';break;
 case scene.LIGHT_MODE_BLUE:
 curlights='Blue';break;
 case scene.LIGHT_MODE_RED:
 curlights='Red';break;
 case scene.LIGHT_MODE_CUBE:
 curlights='Cube';break;
 case scene.LIGHT_MODE_CAD:
 curlights='CAD';break;
 case scene.LIGHT_MODE_HEADLAMP:
 curlights='Headlamp';break;
 }
 if(curlights!='Artwork')
 res+=host.util.printf('\n3Dlights=%s,', curlights);
 //determine global render mode
 switch(scene.renderMode){
 case scene.RENDER_MODE_BOUNDING_BOX:
 currender='BoundingBox';break;
 case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX:
 currender='TransparentBoundingBox';break;
 case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX_OUTLINE:
 currender='TransparentBoundingBoxOutline';break;
 case scene.RENDER_MODE_VERTICES:
 currender='Vertices';break;
 case scene.RENDER_MODE_SHADED_VERTICES:
 currender='ShadedVertices';break;
 case scene.RENDER_MODE_WIREFRAME:
 currender='Wireframe';break;
 case scene.RENDER_MODE_SHADED_WIREFRAME:
 currender='ShadedWireframe';break;
 case scene.RENDER_MODE_SOLID:
 currender='Solid';break;
 case scene.RENDER_MODE_TRANSPARENT:
 currender='Transparent';break;
 case scene.RENDER_MODE_SOLID_WIREFRAME:
 currender='SolidWireframe';break;
 case scene.RENDER_MODE_TRANSPARENT_WIREFRAME:
 currender='TransparentWireframe';break;
 case scene.RENDER_MODE_ILLUSTRATION:
 currender='Illustration';break;
 case scene.RENDER_MODE_SOLID_OUTLINE:
 currender='SolidOutline';break;
 case scene.RENDER_MODE_SHADED_ILLUSTRATION:
 currender='ShadedIllustration';break;
 case scene.RENDER_MODE_HIDDEN_WIREFRAME:
 currender='HiddenWireframe';break;
 }
 if(currender!='Solid')
 res+=host.util.printf('\n3Drender=%s,', currender);
 //write result string to the console
 host.console.show();
// host.console.clear();
 host.console.println('%%\n%% Copy and paste the following text to the\n'+
 '%% option list of \\includemedia!\n%%' + res + '\n');
}

function get3Dview () {
 var camera=scene.cameras.getByIndex(0);
 var coo=camera.targetPosition;
 var c2c=camera.position.subtract(coo);
 var roo=c2c.length;
 c2c.normalize();
 var res='VIEW%=insert optional name here\n';
 if(!(coo.x==0 && coo.y==0 && coo.z==0))
 res+=host.util.printf(' COO=%s %s %s\n', coo.x, coo.y, coo.z);
 if(!(c2c.x==0 && c2c.y==-1 && c2c.z==0))
 res+=host.util.printf(' C2C=%s %s %s\n', c2c.x, c2c.y, c2c.z);
 if(roo > 1e-9)
 res+=host.util.printf(' ROO=%s\n', roo);
 var roll = camera.roll*180/Math.PI;
 if(host.util.printf('%.4f', roll)!=0)
 res+=host.util.printf(' ROLL=%s\n', roll);
 if(camera.projectionType==camera.TYPE_PERSPECTIVE){
 var aac=camera.fov * 180/Math.PI;
 if(host.util.printf('%.4f', aac)!=30)
 res+=host.util.printf(' AAC=%s\n', aac);
 }else{
 if(host.util.printf('%.4f', camera.viewPlaneSize)!=1)
 res+=host.util.printf(' ORTHO=%s\n', 1./camera.viewPlaneSize);
 }
 rgb=scene.background.getColor();
 if(!(rgb.r==1 && rgb.g==1 && rgb.b==1))
 res+=host.util.printf(' BGCOLOR=%s %s %s\n', rgb.r, rgb.g, rgb.b);
 switch(scene.lightScheme){
 case scene.LIGHT_MODE_FILE:
 curlights='Artwork';break;
 case scene.LIGHT_MODE_NONE:
 curlights='None';break;
 case scene.LIGHT_MODE_WHITE:
 curlights='White';break;
 case scene.LIGHT_MODE_DAY:
 curlights='Day';break;
 case scene.LIGHT_MODE_NIGHT:
 curlights='Night';break;
 case scene.LIGHT_MODE_BRIGHT:
 curlights='Hard';break;
 case scene.LIGHT_MODE_RGB:
 curlights='Primary';break;
 case scene.LIGHT_MODE_BLUE:
 curlights='Blue';break;
 case scene.LIGHT_MODE_RED:
 curlights='Red';break;
 case scene.LIGHT_MODE_CUBE:
 curlights='Cube';break;
 case scene.LIGHT_MODE_CAD:
 curlights='CAD';break;
 case scene.LIGHT_MODE_HEADLAMP:
 curlights='Headlamp';break;
 }
 if(curlights!='Artwork')
 res+=' LIGHTS='+curlights+'\n';
 switch(scene.renderMode){
 case scene.RENDER_MODE_BOUNDING_BOX:
 defaultrender='BoundingBox';break;
 case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX:
 defaultrender='TransparentBoundingBox';break;
 case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX_OUTLINE:
 defaultrender='TransparentBoundingBoxOutline';break;
 case scene.RENDER_MODE_VERTICES:
 defaultrender='Vertices';break;
 case scene.RENDER_MODE_SHADED_VERTICES:
 defaultrender='ShadedVertices';break;
 case scene.RENDER_MODE_WIREFRAME:
 defaultrender='Wireframe';break;
 case scene.RENDER_MODE_SHADED_WIREFRAME:
 defaultrender='ShadedWireframe';break;
 case scene.RENDER_MODE_SOLID:
 defaultrender='Solid';break;
 case scene.RENDER_MODE_TRANSPARENT:
 defaultrender='Transparent';break;
 case scene.RENDER_MODE_SOLID_WIREFRAME:
 defaultrender='SolidWireframe';break;
 case scene.RENDER_MODE_TRANSPARENT_WIREFRAME:
 defaultrender='TransparentWireframe';break;
 case scene.RENDER_MODE_ILLUSTRATION:
 defaultrender='Illustration';break;
 case scene.RENDER_MODE_SOLID_OUTLINE:
 defaultrender='SolidOutline';break;
 case scene.RENDER_MODE_SHADED_ILLUSTRATION:
 defaultrender='ShadedIllustration';break;
 case scene.RENDER_MODE_HIDDEN_WIREFRAME:
 defaultrender='HiddenWireframe';break;
 }
 if(defaultrender!='Solid')
 res+=' RENDERMODE='+defaultrender+'\n';

 //detect existing Clipping Plane (3D Cross Section)
 var clip=null;
 if(
 clip=scene.nodes.getByName('$$$$$$')||
 clip=scene.nodes.getByName('Clipping Plane')
);
 for(var i=0;i<scene.nodes.count;i++){
 var nd=scene.nodes.getByIndex(i);
 if(nd==clip||nd.name=='') continue;
 var ndUTFName='';
 for (var j=0; j<nd.name.length; j++) {
 var theUnicode = nd.name.charCodeAt(j).toString(16);
 while (theUnicode.length<4) theUnicode = '0' + theUnicode;
 ndUTFName += theUnicode;
 }
 var end=nd.name.lastIndexOf('.');
 if(end>0) var ndUserName=nd.name.substr(0,end);
 else var ndUserName=nd.name;
 respart=' PART='+ndUserName+'\n';
 respart+=' UTF16NAME='+ndUTFName+'\n';
 defaultvals=true;
 if(!nd.visible){
 respart+=' VISIBLE=false\n';
 defaultvals=false;
 }
 if(nd.opacity<1.0){
 respart+=' OPACITY='+nd.opacity+'\n';
 defaultvals=false;
 }
 if(nd.constructor.name=='Mesh'){
 currender=defaultrender;
 switch(nd.renderMode){
 case scene.RENDER_MODE_BOUNDING_BOX:
 currender='BoundingBox';break;
 case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX:
 currender='TransparentBoundingBox';break;
 case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX_OUTLINE:
 currender='TransparentBoundingBoxOutline';break;
 case scene.RENDER_MODE_VERTICES:
 currender='Vertices';break;
 case scene.RENDER_MODE_SHADED_VERTICES:
 currender='ShadedVertices';break;
 case scene.RENDER_MODE_WIREFRAME:
 currender='Wireframe';break;
 case scene.RENDER_MODE_SHADED_WIREFRAME:
 currender='ShadedWireframe';break;
 case scene.RENDER_MODE_SOLID:
 currender='Solid';break;
 case scene.RENDER_MODE_TRANSPARENT:
 currender='Transparent';break;
 case scene.RENDER_MODE_SOLID_WIREFRAME:
 currender='SolidWireframe';break;
 case scene.RENDER_MODE_TRANSPARENT_WIREFRAME:
 currender='TransparentWireframe';break;
 case scene.RENDER_MODE_ILLUSTRATION:
 currender='Illustration';break;
 case scene.RENDER_MODE_SOLID_OUTLINE:
 currender='SolidOutline';break;
 case scene.RENDER_MODE_SHADED_ILLUSTRATION:
 currender='ShadedIllustration';break;
 case scene.RENDER_MODE_HIDDEN_WIREFRAME:
 currender='HiddenWireframe';break;
 //case scene.RENDER_MODE_DEFAULT:
 // currender='Default';break;
 }
 if(currender!=defaultrender){
 respart+=' RENDERMODE='+currender+'\n';
 defaultvals=false;
 }
 }
 if(origtrans[nd.name]&&!nd.transform.isEqual(origtrans[nd.name])){
 var lvec=nd.transform.transformDirection(new Vector3(1,0,0));
 var uvec=nd.transform.transformDirection(new Vector3(0,1,0));
 var vvec=nd.transform.transformDirection(new Vector3(0,0,1));
 respart+=' TRANSFORM='
 +lvec.x+' '+lvec.y+' '+lvec.z+' '
 +uvec.x+' '+uvec.y+' '+uvec.z+' '
 +vvec.x+' '+vvec.y+' '+vvec.z+' '
 +nd.transform.translation.x+' '
 +nd.transform.translation.y+' '
 +nd.transform.translation.z+'\n';
 defaultvals=false;
 }
 respart+=' END\n';
 if(!defaultvals) res+=respart;
 }
 if(clip){
 var centre=clip.transform.translation;
 var normal=clip.transform.transformDirection(new Vector3(0,0,1));
 res+=' CROSSSECT\n';
 if(!(centre.x==0 && centre.y==0 && centre.z==0))
 res+=host.util.printf(
 ' CENTER=%s %s %s\n', centre.x, centre.y, centre.z);
 if(!(normal.x==1 && normal.y==0 && normal.z==0))
 res+=host.util.printf(
 ' NORMAL=%s %s %s\n', normal.x, normal.y, normal.z);
 res+=host.util.printf(
 ' VISIBLE=%s\n', clip.visible);
 res+=host.util.printf(
 ' PLANECOLOR=%s %s %s\n', clip.material.emissiveColor.r,
 clip.material.emissiveColor.g, clip.material.emissiveColor.b);
 res+=host.util.printf(
 ' OPACITY=%s\n', clip.opacity);
 res+=host.util.printf(
 ' INTERSECTIONCOLOR=%s %s %s\n',
 clip.wireframeColor.r, clip.wireframeColor.g, clip.wireframeColor.b);
 res+=' END\n';
// for(var propt in clip){
// console.println(propt+':'+clip[propt]);
// }
 }
 res+='END\n';
 host.console.show();
// host.console.clear();
 host.console.println('%%\n%% Add the following VIEW section to a file of\n'+
 '%% predefined views (See option "3Dviews"!).\n%%\n' +
 '%% The view may be given a name after VIEW=...\n' +
 '%% (Remove \'%\' in front of \'=\'.)\n%%');
 host.console.println(res + '\n');
}

//add items to 3D context menu
runtime.addCustomMenuItem("dfltview", "Generate Default View", "default", 0);
runtime.addCustomMenuItem("currview", "Get Current View", "default", 0);
runtime.addCustomMenuItem("csection", "Cross Section", "checked", 0);

//menu event handlers
menuEventHandler = new MenuEventHandler();
menuEventHandler.onEvent = function(e) {
 switch(e.menuItemName){
 case "dfltview": calc3Dopts(); break;
 case "currview": get3Dview(); break;
 case "csection":
 addremoveClipPlane(e.menuItemChecked);
 break;
 }
};
runtime.addEventHandler(menuEventHandler);

//global variable taking reference to currently selected node;
var target=null;
selectionEventHandler=new SelectionEventHandler();
selectionEventHandler.onEvent=function(e){
 if(e.selected&&e.node.name!=''){
 target=e.node;
 }else{
 target=null;
 }
}
runtime.addEventHandler(selectionEventHandler);

cameraEventHandler=new CameraEventHandler();
cameraEventHandler.onEvent=function(e){
 var clip=null;
 runtime.removeCustomMenuItem("csection");
 runtime.addCustomMenuItem("csection", "Cross Section", "checked", 0);
 if(clip=scene.nodes.getByName('$$$$$$')|| //predefined
 scene.nodes.getByName('Clipping Plane')){ //added via context menu
 runtime.removeCustomMenuItem("csection");
 runtime.addCustomMenuItem("csection", "Cross Section", "checked", 1);
 }
 if(clip){//plane in predefined views must be rotated by 90 deg around normal
 clip.transform.rotateAboutLineInPlace(
 Math.PI/2,clip.transform.translation,
 clip.transform.transformDirection(new Vector3(0,0,1))
);
 }
 for(var i=0; i<rot4x4.length; i++){rot4x4[i].setIdentity()}
 target=null;
}
runtime.addEventHandler(cameraEventHandler);

var rot4x4=new Array(); //keeps track of spin and tilt axes transformations
//key event handler for scaling moving, spinning and tilting objects
keyEventHandler=new KeyEventHandler();
keyEventHandler.onEvent=function(e){
 var backtrans=new Matrix4x4();
 var trgt=null;
 if(target) {
 trgt=target;
 var backtrans=new Matrix4x4();
 var trans=trgt.transform;
 var parent=trgt.parent;
 while(parent.transform){
 //build local to world transformation matrix
 trans.multiplyInPlace(parent.transform);
 //also build world to local back-transformation matrix
 backtrans.multiplyInPlace(parent.transform.inverse.transpose);
 parent=parent.parent;
 }
 backtrans.transposeInPlace();
 }else{
 if(
 trgt=scene.nodes.getByName('$$$$$$')||
 trgt=scene.nodes.getByName('Clipping Plane')
) var trans=trgt.transform;
 }
 if(!trgt) return;

 var tname=trgt.name;
 if(typeof(rot4x4[tname])=='undefined') rot4x4[tname]=new Matrix4x4();
 if(target)
 var tiltAxis=rot4x4[tname].transformDirection(new Vector3(0,1,0));
 else
 var tiltAxis=trans.transformDirection(new Vector3(0,1,0));
 var spinAxis=rot4x4[tname].transformDirection(new Vector3(0,0,1));

 //get the centre of the mesh
 if(target&&trgt.constructor.name=='Mesh'){
 var centre=trans.transformPosition(trgt.computeBoundingBox().center);
 }else{ //part group (Node3 parent node, clipping plane)
 var centre=new Vector3(trans.translation);
 }
 switch(e.characterCode){
 case 30://tilt up
 rot4x4[tname].rotateAboutLineInPlace(
 -Math.PI/900,rot4x4[tname].translation,tiltAxis);
 trans.rotateAboutLineInPlace(-Math.PI/900,centre,tiltAxis);
 break;
 case 31://tilt down
 rot4x4[tname].rotateAboutLineInPlace(
 Math.PI/900,rot4x4[tname].translation,tiltAxis);
 trans.rotateAboutLineInPlace(Math.PI/900,centre,tiltAxis);
 break;
 case 28://spin right
 if(e.ctrlKeyDown&&target){
 trans.rotateAboutLineInPlace(-Math.PI/900,centre,spinAxis);
 }else{
 rot4x4[tname].rotateAboutLineInPlace(
 -Math.PI/900,rot4x4[tname].translation,new Vector3(0,0,1));
 trans.rotateAboutLineInPlace(-Math.PI/900,centre,new Vector3(0,0,1));
 }
 break;
 case 29://spin left
 if(e.ctrlKeyDown&&target){
 trans.rotateAboutLineInPlace(Math.PI/900,centre,spinAxis);
 }else{
 rot4x4[tname].rotateAboutLineInPlace(
 Math.PI/900,rot4x4[tname].translation,new Vector3(0,0,1));
 trans.rotateAboutLineInPlace(Math.PI/900,centre,new Vector3(0,0,1));
 }
 break;
 case 120: //x
 translateTarget(trans, new Vector3(1,0,0), e);
 break;
 case 121: //y
 translateTarget(trans, new Vector3(0,1,0), e);
 break;
 case 122: //z
 translateTarget(trans, new Vector3(0,0,1), e);
 break;
 case 88: //shift + x
 translateTarget(trans, new Vector3(-1,0,0), e);
 break;
 case 89: //shift + y
 translateTarget(trans, new Vector3(0,-1,0), e);
 break;
 case 90: //shift + z
 translateTarget(trans, new Vector3(0,0,-1), e);
 break;
 case 115: //s
 trans.translateInPlace(centre.scale(-1));
 trans.scaleInPlace(1.01);
 trans.translateInPlace(centre.scale(1));
 break;
 case 83: //shift + s
 trans.translateInPlace(centre.scale(-1));
 trans.scaleInPlace(1/1.01);
 trans.translateInPlace(centre.scale(1));
 break;
 }
 trans.multiplyInPlace(backtrans);
}
runtime.addEventHandler(keyEventHandler);

//translates object by amount calculated from Canvas size
function translateTarget(t, d, e){
 var cam=scene.cameras.getByIndex(0);
 if(cam.projectionType==cam.TYPE_PERSPECTIVE){
 var scale=Math.tan(cam.fov/2)
 *cam.targetPosition.subtract(cam.position).length
 /Math.min(e.canvasPixelWidth,e.canvasPixelHeight);
 }else{
 var scale=cam.viewPlaneSize/2
 /Math.min(e.canvasPixelWidth,e.canvasPixelHeight);
 }
 t.translateInPlace(d.scale(scale));
}

function addremoveClipPlane(chk) {
 var curTrans=getCurTrans();
 var clip=scene.createClippingPlane();
 if(chk){
 //add Clipping Plane and place its center either into the camera target
 //position or into the centre of the currently selected mesh node
 var centre=new Vector3();
 if(target){
 var trans=target.transform;
 var parent=target.parent;
 while(parent.transform){
 trans=trans.multiply(parent.transform);
 parent=parent.parent;
 }
 if(target.constructor.name=='Mesh'){
 var centre=trans.transformPosition(target.computeBoundingBox().center);
 }else{
 var centre=new Vector3(trans.translation);
 }
 target=null;
 }else{
 centre.set(scene.cameras.getByIndex(0).targetPosition);
 }
 clip.transform.setView(
 new Vector3(0,0,0), new Vector3(1,0,0), new Vector3(0,1,0));
 clip.transform.translateInPlace(centre);
 }else{
 if(
 scene.nodes.getByName('$$$$$$')||
 scene.nodes.getByName('Clipping Plane')
){
 clip.remove();clip=null;
 }
 }
 restoreTrans(curTrans);
 return clip;
}

//function to store current transformation matrix of all nodes in the scene
function getCurTrans() {
 var tA=new Array();
 for(var i=0; i<scene.nodes.count; i++){
 var nd=scene.nodes.getByIndex(i);
 if(nd.name=='') continue;
 tA[nd.name]=new Matrix4x4(nd.transform);
 }
 return tA;
}

//function to restore transformation matrices given as arg
function restoreTrans(tA) {
 for(var i=0; i<scene.nodes.count; i++){
 var nd=scene.nodes.getByIndex(i);
 if(tA[nd.name]) nd.transform.set(tA[nd.name]);
 }
}

//store original transformation matrix of all mesh nodes in the scene
var origtrans=getCurTrans();

//set initial state of "Cross Section" menu entry
cameraEventHandler.onEvent(1);

//host.console.clear();

var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton0'){ocgs[i].state=false;}}

Figure 4: Pentagram as regular star polygon 5
2
.

of vertices and denominator shows how many adjacent vertices are skipped when connecting two
vertices. When denominator is 1, no vertices are skipped and the polygon is regular, when it is 2,
one adjacent vertex is skipped, when it is 3, two vertices are skipped and so on. Figure 4 shows
regular star 5/2-gon4.

Straight–lined polygons can have at least 3 sides, a 2-gon degenerates to two-sided segment.
This is also the case of star polygons: their fractional value cannot be less than or equal to 2. The
simplest star polygon is 5/2 and has fractional value 2.5.

O

A

FE
ϕ

α

Figure 5: Computing angles of star polygon.

The mathematical notation of star polygons not only indicates their shape but also helps com-
puting their angles (Figure 5). When going from some vertex A of star polygon n/m by its sides to
the same vertex, the center is surrounded m times and the path is divided into n equal angles. So,

4Sometimes the fraction n/m is reducible. In this case, instead of star polygon, the pattern is a compound of several
regular polygons. For example, faces of Sun Cube contain pattern 8/2, which is compound of two squares. For the
purpose of this article, we treat this case identically with star polygons.

4

the central angle:
̸ EOF = φ = 360 · m

n
.

Next, we can observe in the quadrilateral OEAF two right angles: ̸ OEA and ̸ OFA. This means
the polygon angle

̸ EAF = α = 180− φ = 180− 360 · m
n

= 180
(
1− 2

m

n

)
. (1)

A polyhedron vertex adds angles of faces less than 360. The difference between 360 and the sum
of face angles at this vertex is named vertex defect.

It is important to mention the duality of polyhedra, which exchange faces with vertices. A poly-
hedron B dual to some polyhedron A can be constructed by placing its vertices in centers of faces
of A. Consider adjacent vertices of B the vertices placed on adjacent faces of A. Construct edges
by connecting adjacent vertices of B and then construct faces on each closed polygon that has no
vertex inside. The duality property is reciprocal: applying duality twice we obtain initial polyhe-
dron. Tetrahedron is dual to itself, cube and octahedron make a dual pair as well as dodecahedron
and icosahedron.

3 Geometrical principles and algorithm
Now we are prepared to discuss two important principles for rigorous searching of sun puzzles.

Figure 6: Deltoidal Hexecontahedron.

The first principle: In a sun puzzle with n-fold axes:

• the polygon delimited by center is n-gon,

• the polygon delimited by center and petals is n/2-gon,

• the polygon delimited by center, petals and rays is n/3-gon,

5

More than that:

• the angle of puzzle face on 3-fold vertex equal to the angle of n/2-gon,

• the angle of puzzle face on 4-fold vertex equals to the angle of n/3-gon,

• if there exist 5-fold vertices in sun puzzles, the angle of face on 5-fold vertex is most probably
equal to the angle of n/4-gon,

• there is probably no 6-fold or higher vertices in sun puzzles.

The claim about the face angle on 5-fold vertex can be sustained by the following fact. When,
starting with regular n-gon we stellate it, that is, extend its sides in both directions until they are
intersected again, we obtain n/2-gon whose vertices are further from the center than the vertices of
initial polygon. If we extend its sides more, we obtain n/3-gon whose vertices are further from the
center that the vertices of n/2-gon and so on. Similarly, when we have a polyhedron with symmetric
vertices, its 3-fold vertices are nearest to the center, 4-fold vertices are further from the center than 3-
fold vertices, 5-fold vertices are further than 4-fold vertices and so on. We can observe this behavior
in Deltoidal Hexecontahedron in Figure 6 which has regular 3-fold, 4-fold and 5-fold vertices.

Figure 7: Left – LanLan Face Turning Octahedron, right – mf8 Radiolarian Icosaix V3.

When the vertices of puzzle polyhedron are regular, the 4-fold vertices look like in LanLan Face
Turning Octahedron and 5-fold ones as in mf8 Radiolarian Icosaix V3 in Figure 7. However, no sun
puzzle is known to have 4-fold or 5-fold vertices. Instead of 4-fold vertices, there are clusters of four
3-fold vertices as in Sky Eyes. For the purpose of this article, we can treat clusters of 4 vertices as
one 4-fold vertex.

The second principle: All polyhedra have the sum of vertex defect equal to 720◦. If this number is
expressed in radians, its value is 4π. Somebody can immediately observe this number equals to the
area of unite sphere surface, and this in not a coincidence. The area on sphere surface is computed
as angular defect. All the points inside the faces of straight–lined polyhedron have neighborhood
identical to flat Euclidean plane, the points in interior of edges have neighborhood composed of
two flat half–planes, which is again a flat Euclidean plane. And only finite number of vertices have
neighborhood different from Euclidean plane. So, all polyhedron sharpness is inside vertices.

When we know the face polygons, we can compute their angles. When we know the vertex
configuration of some polyhedron, we can compute the defect of each vertex. Usually, all vertices

6

have regular configuration of one or several types. This means, the vertex defect of d-fold vertex
when the rotational axes are n-fold can be computed by formula (apply equation (1) and the 1st
principle: m = d− 1):

360− d · 180
(
1− 2

d− 1

n

)
= 180

(
2
(d− 1)d

n
+ 2− d

)
. (2)

Now we can estimate the number of vertices, edges and faces.
For example, Sun Cube has square faces, whose angles by (1) are 180(1 - 2/4) = 180/2 = 90◦. A

vertex connects 3 squares which sum to 3 · 90 = 270◦, and its defect is 360 - 270 = 90◦. So, a cube by
the 2nd principle has 720 / 90 = 8 vertices. Sunminx has pentagonal vertices with angles 180(1 - 2/5)
= 180 · 3/5 = 108◦. A vertex has 3 regular pentagons which sum to 3 · 108 = 324◦, and its defect is
360 - 324 = 36◦. So, a dodecahedron has 720 / 36 = 20 vertices.

Algorithm of searching for sun puzzles. We start with fixing the desired axes order n. Then, by
(2) we compute the defect of vertices. For 3-vertex it is:

∆3 = 180

(
2
(3− 1)3

n
+ 2− 3

)
= 180

(
12

n
− 1

)
.

For 4-vertex it is:
∆4 = 180

(
2
(4− 1)4

n
+ 2− 4

)
= 180

(
24

n
− 2

)
.

For 5-vertex it would be:

∆5 = 180

(
2
(5− 1)5

n
+ 2− 5

)
= 180

(
40

n
− 3

)
.

We can consider the vertex defect as a “credit” of each vertex and have to find the combination
of these defects so they sum up to 720.

First, assume n is even and ∆3 divides 720. In this case all vertices can be 3-fold and the poly-
hedron is regular. Then the number of vertices:

v3 =
720

180(12/n− 1)
=

4

12/n− 1
=

4n

12− n
.

Then, each face by the 1st principle is a regular n/2-gon. If we count the number of vertices of each
face they are fn/2, but because at each vertex meet 3 faces, we considered each vertex for 3 times.
So the number of faces f and vertices v are related as:

v3 =
f3n

2 · 3
=

4n

12− n
.

Now, we can compute the number of faces as:

f3n

6
=

4n

12− n
,

f3 =
24

12− n
.

In a similar way, if the polyhedron is regular having all 4-vertices (octahedron), the number of
vertices:

v4 =
720

180(24/n− 2)
=

4

24/n− 2
=

2n

12− n
.

7

The number of n/3-gonal faces, which meet 4 at each vertex (principle 1) can be computed as:

v4 =
f4n

3 · 4
=

2n

12− n
,

f4 = f3 =
24

12− n
. (3)

We can observe in (3) that the number of faces f depends on axes order n in the same way for
3-fold and 4-fold vertices. No sun twisty puzzles is known to have polyhedron whose vertices are 5-
fold or higher. If such puzzles exist, their face number f depends on axes order n by another relation.
But if we limit the puzzles search to polyhedra with 3-fold or 4-fold vertices only, we can compute
the number of faces, even if the same polyhedron have different vertex types. Table 1 presents the
integer solutions of equation (3):

Table 1: Relation between the axes order and the number of axes / faces of polyhedron.

Axes order n No of axes f Examples / remarks
0 2 There is no axis of order 0, missing symmetry is 1-fold axis
4 3 Some pillow puzzle with dihedral symmetry
6 4 E.g. tetrahedron
8 6 Sun Cube
9 8 E.g. octahedron
10 12 Sunminx, Sky Eyes, Cullinan and Big Dipper
11 24 E.g. pentagonal icosi–tetrahedron or deltiodal icosi–tetrahedron
12 ∞ 2D puzzle

Second, 4-fold vertices in sun puzzles are usually replaced with clusters of 3-fold vertices con-
taining 4 such vertices. Currently, there is no exception to this rule. If we continue the analogy
with pieces credit, then the “exchange rate” between 4-fold and 3-fold vertices is 4:1. There is also
an “exchange rate” of 2:1 between 3-vertices and edges, observable in existing sun puzzles. The table
2 on page 20 shows the same relation for other sun twisty puzzles. So, we can introduce the “credit”
for vertex and edge pieces. As soon as we find one suitable polyhedron, we can compute its “price”
from the number of vertices v and edges e as v + 2e and then we can add vertex and subtract edge
pieces5 or vice–versa keeping the total “price” intact. This way, we can search for new polyhedra.

The number of petal pieces p and the sum of left and right rays rl, rr is always the same and
equal to combinatorial symmetry, the number of faces f multiplies by the axes order n:

p = rl + rr = fn =
24n

12− n
.

The number of hidden pieces h equals to the number of left or right rays if the rays are all paired
(paired rays belong to the same edge). Otherwise, it is less than their sum by twice the number of
edges (2 hidden pieces belong to the same edge). If the number of left and right rays is the same
(rl = r = rr), the equation is simpler:

h = rl + rr − 2e = 2(r − e).

Make the footnote text to appear at the same page as footnote mark. For this, the section should
not end in math formula, instead in a paragraph of text.

5The Euler formula v− e+ f = 2 for polyhedra, which can be projected to sphere does not apply to pieces of twisty
puzzles: the face and edge pieces need not exists: two vertex pieces may be adjacent without an edge between them.

8

4 Polyhedra suitable for sun puzzles

Figure 8: Polyhedron dual to one of Big Dipper.

The most often used polyhedra for twisty puzzles are regular ones. There are only 5 regular
polyhedra, and we can easily confirm this:

Triangular face has by (1) the angle of 180(1 - 2/3) = 60◦. To not exceed 360◦, a vertex can have:

• 3 faces: 60 × 3 = 180◦ — Tetrahedron,
• 4 faces: 60 × 4 = 240◦ — Octahedron,
• 5 faces: 60 × 5 = 300◦ — Icosahedron,
• 6 faces: 60 × 6 = 360◦ degenerates to planar tiling;

Square face has 180(1 - 2/4) = 90◦, a vertex can have:

• 3 faces: 90 × 3 = 270◦ — Cube,
• 4 faces: 90 × 4 = 360◦ degenerates to planar tiling;

Pentagonal face has 180(1 - 2/5) = 108◦, a vertex can have:

• 3 faces: 108 × 3 = 324◦ — Dodecahedron;

9

var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton1'){ocgs[i].state=false;}}

Hexagonal face has 180(1 - 2/6) = 120◦, a vertex can have:

• 3 faces: 120 × 3 = 360◦ degenerates to planar tiling.

Figure 9: Polyhedron dual to one of Cullinan.

Less often used are Archimedean solids6. Their faces are all regular polygons, but not all faces
equal to each other. These polyhedra have all equal vertices, but not necessarily regular. The
Archimedean polyhedra have a circumscribed sphere and all their faces have circumscribed cir-
cles. There are 13 Archimedean polyhedrons and 2 infinite series of prisms and antiprisms. Their
mathematical notation is based on vertex configuration and contains as many numbers as many
faces meet in vertices, each number names the polygon of the face:

3.6.6 – 60 + 120 + 120 = 300 — Truncated Tetrahedron,

3.4.3.4 – 60 + 90 + 60 + 90 = 300 — Cuboctahedron,
6https://en.wikipedia.org/wiki/Archimedean_solid

10

var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton2'){ocgs[i].state=false;}}

https://en.wikipedia.org/wiki/Archimedean_solid

3.8.8 – 60 + 135 + 135 = 330 — Truncated Cube,

4.6.6 – 90 + 120 + 120 = 330 — Truncated Octahedron,

3.4.4.4 – 60 + 90 + 90 + 90 = 330 — Rhombicuboctahedron,

4.6.8 – 90 + 120 + 135 = 345 — Truncated Cuboctahedron,

3.3.3.3.4 – 60 + 60 + 60 + 60 + 90 = 330 — Snub Cube,

3.5.3.5 – 60 + 108 + 60 + 108 = 336 — Icosidodecahedron,

3.10.10 – 60 + 144 + 144 = 348 — Truncated Dodecahedron,

5.6.6 – 108 + 120 + 120 = 348 — Truncated Icosahedron,

3.4.5.4 – 60 + 90 + 108 + 90 = 348 — Rhombicosidodecahedron,

4.6.10 – 90 + 120 + 144 = 354 — Truncated Icosidodecahedron,

3.3.3.3.5 – 60 + 60 + 60 + 60 + 108 = 348 — Snub Dodecahedron,

3.3.3.n – 60 + 60 + 60 + 180 - 360/n = 360(1 - 1/n) — n-fold Antiprism,

4.4.n – 90 + 90 + 180 - 360/n = 360(1 - 1/n) — n-fold Prism.

Square prism is identical to cube, triangular antiprism is identical to octahedron. Examples of puzzles
in form of Archimedean solids are DaYanGem series. Unfortunately, despite the fact these polyhedra
have more elements than regular ones, they do not have a larger combinatorial symmetry. For
example, VeryPuzzle Tuttminx has the form of truncated icosahedron with 32 faces, 90 edges and 60
vertices. Still, its combinatorial symmetry is:

Pentagonal faces: 12 × 5 = 60,

Hexagonal faces: 20 × 3 = 60,

Asymmetric edges between pentagonal and hexagonal faces: 60 × 1 = 60,

Symmetric edges between hexagonal faces: 30 × 2 = 60,

Vertices: 60 × 1 = 60.

So, its combinatorial symmetry equals to that of icosahedron 60.
Polyhedra dual to Archimedean, including prisms and antiprisms, are Catalan solids7. They have

inscribed sphere and each face has inscribed circle:

Triakis Tetrahedron is dual to Truncated Tetrahedron (3.6.6),

Rhombic Dodecahedron is dual to Cuboctahedron (3.4.3.4),

Triakis Octahedron is dual to Truncated Cube (3.8.8),

Tetrakis Hexahedron is dual to Truncated Octahedron (4.6.6),

Deltoidal Icosi-Tetrahedron is dual to Rhombicuboctahedron (3.4.4.4),

Disdyakis Dodecahedron is dual to Truncated Cuboctahedron (4.6.8),
7https://en.wikipedia.org/wiki/Catalan_solid

11

https://en.wikipedia.org/wiki/Catalan_solid

Pentagonal Icosi-Tetrahedron is dual to Snub Cube (3.3.3.3.4),

Rhombic Triacontahedron is dual to Icosidodecahedron (3.5.3.5),

Triakis Icosahedron is dual to Truncated Dodecahedron (3.10.10),

Pentakis Dodecahedron is dual to Truncated Icosahedron (5.6.6),

Deltoidal Hexecontahedron is dual to Rhombicosidodecahedron (3.4.5.4),

Disdyakis Triacontahedron is dual to Truncated Icosidodecahedron (4.6.10),

Pentagonal Hexecontahedron is dual to Snub Dodecahedron (3.3.3.3.5),

n-fold Trapezohedron is dual to n-fold Antiprism (3.3.3.n),

n-fold Bipyramid is dual to n-fold Prism (4.4.n).

Square bipyramid is identical to octahedron, triangular trapezohedron is identical to cube. All dihe-
dral angles (angles between adjacent face planes) of Catalan solids are equal. Together with regular
polyhedra, Catalan solids are suitable for sun twisty puzzles. For example, Sky Eyes has the form of
Rhombic Dodecahedron.

Figure 10: Face intersections of dodecahedra rotated by half face angle.

There are also other solids, whose essential properties are suitable for construction of sun puz-
zles. They are dual to polyhedra, whose all faces are regular polygons and their vertex defects are

12

var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton3'){ocgs[i].state=false;}}

equal across all vertices. Unlike Catalan solids, their faces are not always equal among them. How-
ever, their vertex configuration are regular, dihedral angles are equal, all faces have inscribed circles
and all their radii are equal. For example, Figure 8 shows the polyhedron dual to that of Big Dipper.
Its vertex configurations are 3.4.3.4 and 3.3.4.4, obviously all its vertex defects are the same. Figure
9 presents the polyhedron dual to that of Cullinan. Its vertex configurations are 3.3.3.3.3 and 3.3.4.4,
and the vertex defects are all equal:

60 + 60 + 60 + 60 + 60 = 300 = 60 + 60 + 90 + 90.

5 Preparing stickers and discovering face shapes
The cut surfaces of sun puzzles are almost completely defined by geometry of half-twist. Figure
10 presents two dodecahedra rotated by 36◦ (half of central angle of pentagon, 72◦) one to another
around the face axis. You can see a well defined sections of sides of pentagon on gray faces as well
as cut line of intersected blue and pink faces. The process of finding surface cut lines is presented
in Figure 11 using regular pentagon as example with axis order is 10 (1st row left).

Figure 11: Preparing stickers.

First, prepare a n/2-gon, or compound of 2 regular polygons. In our case, there are 2 regular
pentagons. Mark the intersection points on polygon sides, 2 points on each side (1st row middle).
Then continue the polygon sides until new intersection, they form a n/4-gon (1st row right). In our
case these are 2 5/2-gons. Mark new intersection points. Connect these new points with nearest
intersection points on sides of initial polygon we marked earlier (2nd row left). Continue each line
in interior of polygon until new intersection (2nd row middle). Now we have well defined cuts of
stickers for vertex and edge pieces. These cuts are straight–lined. The rest of cuts are more free, but
it is a good idea to use smooth joint of obtained cuts. A practical way to achieve this is to use circle

13

arcs whose centers are the new points we obtained outside the initial polygon (2nd row right). The
stickers for rays, petals and centers are obtained this way.

Figure 12: Cut surface of polyhedron.

When transforming the cut line into the surface of revolution, straight lines become surface of
hyperboloid of one sheet and circle arc becomes spheric surface smoothly connected with hyper-
boloid. Figure 12 presents the final result. Hyperboloid cut is marked with blue and spheric with
red colors. The ∪-curvature of line is typical for axes order n > 8. When n = 8 (Sun Cube) all cut
lines are straight and all cut surfaces are planar. For n < 8 we obtain ∩-curved lines instead.

Figure 13: Different arrangements of stickers for 10-fold axis.

We can deduce all possible face shapes just by trying different arrangements of vertex and edge
stickers. While doing this, we need to keep in mind several limitations:

1. An edge sticker should be placed between two vertex stickers;

2. Vertex stickers can be alone or two together, but not more.

14

Figure 12 shows balanced sticker configuration, with edge and vertex stickers placed intermittently.
Figure 13 shows sticker configurations with 4 edges, 2 lone vertices and 2 vertex clusters. If we try to
use only 3 edge stickers, we end up with 3 consecutive vertex stickers. These vertex configurations
are present in Sky Eyes, Big Dipper and Cullinan. The left arrangement indicates the rhombic shape
of face while the right one indicates the trapezoidal shape.

6 Finding new puzzles with the algorithm
We now apply the algorithm to describe several sun puzzles. We leave without attention the first
2 rows of Table 1. The axis order 0 has uncertain geometric meaning. The polyhedron with 3 faces
is possible to construct in pillow form, and the axis of order 4 has a good symmetry. Still, we
concentrate on flat polyhedra.

Figure 14: Sun Tetrahedron preliminary design.

We start with polyhedron with 4 faces and axes of order 6. There is only one such polyhedron
with flat faces — tetrahedron. Figure 14 presents a preliminary design of it. The face pattern de-
limited by center, petals and rays is n/3-gon. In case of tetrahedron it is 6/3-gon, which splits into
2-gons. Because the split lines are anyway ∩-curved, it is possible to design such pillow 2-gons.
During designing I was inclined to think the dihedral angle of tetrahedron is too small to serve
a sun mechanism. Now, I believe it is possible to find the cut surfaces for the mechanism and to
materialize this puzzle.

For 8-fold axes there is Sun Cube. But it is not the only puzzle with 6 faces. When we are out of
ideas, we always can take some bipyramid or trapezohedron from two infinite series. The triangular
bipyramid has 6 faces and can be the basis of sun puzzle as it is shown in Figure 15. All its faces are
equal, the puzzle has 2 standalone vertices and 3 clusters of 4 vertices. Its flat and dihedral angles
are larger than 90◦ of Sun Cube, still the design is possible and hopefully the pieces can be designed
to be interchangeable with Sun Cube.

Next, we search for 9-fold axes on polyhedron with 8 faces. The first idea is to try octahedron.
It is indeed possible as it is shown in Figure 16. The only issue is octahedron has no 3-fold vertices.

15

Figure 15: Sun Triangular Bipyramid concept.

So, all its vertices become clusters of 4 vertices of sun puzzle. Due to this fact, there are certain
difficulties in computing the exact geometry of this puzzle. Still, hopefully there is no showstopper
for designing sun octahedron.

Again, nothing stops us from searching another polyhedra with 8 faces to design sun puzzle
with 9-fold axes. And the trapezohedron series contains square trapezohedron. Figure 17 shows its
concept. The good news about this shape is its real flat and dihedral angles are very close to ideal
ones, necessary for 9-fold combinatorial symmetry, which can be observed in Table 3. This puzzle
also has all equal faces. It has 8 single vertices and 2 clusters of 4 vertices.

Going further for puzzleswith 10-fold axes is probablymore interesting andmay result in puzzles
of many different shapes. Because mf8 already presented us 4 such puzzles, we leave this task for
enthusiasts. The more axes a polyhedron have, the more diversity we can expect in polyhedra
suitable for sun puzzles. For example, among Catalan solids, the following have 12 faces: triakis
tetrahedron and rhombic dodecahedron (Sky Eyes is based on it).

Finally, we reach the last possible 11-fold axes. The equation 3 says these puzzles should have
24 faces. It turns out that such polyhedra do exist among Catalan solids. One of them is pentagonal
icosi–tetrahedron. Figure 18 presents sun puzzle based on this polyhedron. All its faces are equal.
It has 32 standalone vertices and 6 clusters of 4 vertices. The polyhedron is chiral, that it, its mirror
polyhedron is different, so here we described 2 almost identical puzzles. Table 3 says its flat and
dihedral angles are very close to theoretically necessary for 11-fold symmetry, which means this
puzzle should be easy to turn, but not so easy to solve.

16

var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton4'){ocgs[i].state=false;}}

Figure 16: Sun Octahedron concept.

Again, there are also other suitable polyhedra with 24 faces. Another Catalan solid is deltoidal
icosi–tetrahedron. A preliminary design of sun puzzle based on it is shown in Figure 19. Its flat and
dihedral angles are slightly different from those of pentagonal icosi–tetrahedron, still they are very
close to ideal ones. As pentagonal icosi–tetrahedron, deltoidal icosi–tetrahedron has all faces equal.
But unlike pentagonal polyhedron, deltoidal puzzle has 8 standalone vertices and 18 clusters of 4
vertices.

Of course, there are also other polyhedra with 24 faces. From Catalan list we can mention tri-
akis octahedron, tetrakis hexahedron, deltoidal icositetrahedron (already considered) and pentag-
onal icositetrahedron (also considered earlier). But there is one polyhedra, which is not Catalan
one, which can be the base for sun puzzle, it is quasi–deltoidal icosi–tetrahedron — Figure 20. It
can be obtained from deltoidal icosi–tetrahedron by cutting it into halves, twisting one by 45◦ and
gluing the halves again. It can be imagined easier if we consider its dual polyhedron — pseudo–
rhombicuboctahedron (Figure 21), which can be obtained from rhombicuboctahedron in similar way
as its dual. This puzzle is very similar to previous one.

This short list of concepts presents the most obvious sun puzzle, which immediately arise when
applying the algorithm of their search. Still, we already discovered 7 essentially different sun twisty
puzzles. Table 2 shows details about different pieces of these as well as of existent sun puzzles.

The table divides all the puzzles in categories by axes order. Besides the order we can observe
two more details common for puzzles inside a category: the number of faces f and the number of
vertices together with twice the number of edges v + 2e. Any of these can describe the category of

17

var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton5'){ocgs[i].state=false;}}

Figure 17: Sun Square Trapezohedron concept.

puzzles. We can observe that v+2e (the puzzle “price”) from penultimate column is always multiple
to 16. So, we can introduce the puzzle complexity (the last column) as this number divided by 16.

The list of sun puzzles is not exhaustive. Its purpose if to show that the axes configurations
found by algorithm do exist, and that usually there are several sun puzzles with given axes order and
number of faces.

As we can see, the algorithm only searches restricted subset of polyhedra. The first artificial
limitation is deliberate exclusion of 5-verties from consideration. This way we constructed a nice
theory, but 5-vertex configuration also needs to be analyzed. Then, the theory does not search for
polyhedra with axes order 5 and 7, because no polyhedra with equal dihedral angles and these axes
exist. But such sun puzzles exist with different dihedral angles! One example is Lapis8 which has 6
axes of order 7 — Figure 22. On the other hand, it is unclear the possibility to construct (possibly
pillow) puzzle with 3 axes of order 4. Is it also unclear if the axes of order 0 has any geometric
meaning as well as the form of polyhedron with only 2 faces.

Including also 5-fold axes can potentially lead to interesting consequences. For example, tetra-
hedron has 3-fold vertices and its sun puzzle has axes of order 6. Octahedron has 4-fold vertices and
its sun puzzle has axes of order 9. Icosahedron has 5-fold axes and its sun puzzle, if exists, would
have axes of order 12. Currently, the theory declares such puzzles 2D. But, if this is possible, the

8By Jeong Min Kim, https://twistypuzzles.com/app/museum/museum_showitem.php?pkey=10250,
https://twistypuzzles.com/app/museum/museum_showitem.php?pkey=10251.

18

var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton6'){ocgs[i].state=false;}}

https://twistypuzzles.com/app/museum/museum_showitem.php?pkey=10250
https://twistypuzzles.com/app/museum/museum_showitem.php?pkey=10251

Figure 18: Sun Pentagonal Icosi–Tetrahedron design.

Figure 19: Sun Deltoidal Icosi–Tetrahedron preliminary design.

19

Figure 20: Sun Quasi–Deltoidal Icosi–Tetrahedron preliminary design.

Table 2: Elements of sun twisty puzzles.

Sun Puzzle Number of pieces
v + 2e Complexity

f v e p r h
Tetrahedron 4 4 6 24 12 12 16 1
Sun Cube 6 8 12 48 24 24 32 2
Triangualar Bipyramid 6 14 9 48 24 30 32 2
Octahedron 8 24 12 72 36 48 48 3
Square Trapezohedron 8 16 16 72 36 40 48 3
Sunminx 12 20 30 120 60 60 80 5
Cullinan 12 30 25 120 60 70 80 5
Sky Eyes 12 32 24 120 60 72 80 5
Big Dipper 12 32 24 120 60 72 80 5
Pentagonal Icosi–Tetrahedron 24 56 60 264 132 144 176 11
Deltoidal Icosi–Tetrahedron 24 80 48 264 132 168 176 11
Quasi–Deltoidal Icosi–Tetrahedron 24 80 48 264 132 168 176 11

theory would be essentially extended.

7 Other questions
While we described the math behind sun twisty puzzles, we only used calculations on integer num-
bers. Nowhere we checked the face angles or dihedral angles of polyhedra. This is done intentially

20

Figure 21: Pseudo–Rhombicuboctahedron dual to Quasi–Deltoidal Icosi–Tetrahedron.

to show that the properties of polyhedra to be suitable for sun twisty puzzles is topological, or
combinatorial, but not geometrical. Still, it is helpful to take a look at these angles on sun twisty
puzzles. Table 3 presents flat and dihedral angles of described puzzles as their real values and the
values, which are ideal for their axis order. The dihedral angle can be computed from face angle us-
ing spherical version of Cosine I Law, the reverse is possible with Cosine II Law. However, having
regular 3-vertex configuration, they can be computed by simpler equations:

cos θ = cosα
1 + cosα, cosα =

cos θ
1− cos θ .

In case of 4-vertex, the face angle α can be computed from the angles between opposite vertex edges
φ, ψ by spherical version of Pythagorean theorem:

cosα = cos φ
2
cos ψ

2
.

We can observe that the difference between ideal and real values are most of the time not too
large. Also, we can observe that the real angles of different polyhedra within the same category are
close to each other. The angle values is the result of the theory, not a requirement.

Speaking on inexact geometry, it is perfectly acceptable for mechanical puzzles. When designing
a puzzle, the geometry should always be based on real polyhedron geometry, not on ideal values.

21

var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton7'){ocgs[i].state=false;}}

Figure 22: Lapis puzzle with axes of order 7: 1st row – V1, 2nd row – V2.

Table 3: Angles of sun twisty puzzles.

Sun Puzzle Flat angle α Dihedral angle θ Tan θ/2Ideal Real Ideal Real
Tetrahedron 60◦ 60◦ 70.53◦ 70.53◦ 1/

√
2 = 0.71

Sun Cube 90◦ 90◦ 90◦ 90◦ 1
Triangualar Bipyramid 90◦ 97.18◦ 90◦ 98.21◦ 1.15
Octahedron9 100◦ 104.48◦ 102.13◦ 109.47◦

√
2 = 1.41

Square Trapezohedron 100◦ 101.95◦ 102.13◦ 105.14◦ 1.31
Sunminx 108◦ 108◦ 116.57◦ 116.57◦ (1 +

√
5)/2 = 1.62

Cullinan10 108◦ 108◦ 116.57◦ 116.57◦ (1 +
√
5)/2 = 1.62

Sky Eyes 108◦ 109.47◦ 116.57◦ 120◦
√
3 = 1.73

Big Dipper 108◦ 109.47◦ 116.57◦ 120◦
√
3 = 1.73

Pentagonal Icosi–Tetrahedron 114.55◦ 114.81◦ 135.28◦ 136.31◦ 2.49
Deltoidal Icosi–Tetrahedron 114.55◦ 115.26◦ 135.28◦ 138.12◦ 2.61
Quasi–Deltoidal Icosi–Tetrahedron 114.55◦ 115.26◦ 135.28◦ 138.12◦ 2.61

The only exception is central face piece, which needs to be an ideal n-gon and should touch petal
pieces having near-miss geometry but sufficiently tight.

Sun puzzles of the same complexity can be designed to have interchangeable pieces. For this,
we should ensure not only their shape are similar but also their size is comparable. Catalan solids
have inscribed sphere and each face has inscribed circle. The radius of inscribed in face circle r of

9Octahedron has no 3-vertices. The flat angles are computed from dihedral angles if 3-vertices would exist.
10Cullinan has not all dihedral angles equal. The values are for standalone 3-vertices.

22

puzzles with interchangeable pieces should match. Due to slightly different dihedral angles, in this
case the radii of inscribed spheres R differ. More exactly:

R

r
= tan θ

2
,

r =
R

tan θ/2 .

So, if two puzzles have interchangeable pieces, they have r1 = r2 = r, and:

R1

tan θ1/2
= r1 = r2 =

R2

tan θ2/2
,

R1

R2

=
tan θ1/2
tan θ2/2

.

So, the sizes of puzzles of the same complexity compare as tan θ/2 of their polyhedra. This value is
shown for each puzzle in the last column of Table 3.

23

	Introduction
	Definitions
	Geometrical principles and algorithm
	Polyhedra suitable for sun puzzles
	Preparing stickers and discovering face shapes
	Finding new puzzles with the algorithm
	Other questions

	fd@rm@7:
	fd@rm@6:
	fd@rm@5:
	fd@rm@4:
	fd@rm@3:
	fd@rm@2:
	fd@rm@1:
	fd@rm@0:

